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ABSTRACT: The yield stress of a polymer filled with rigid filler particles much larger
than 5 �m is affected by the single-particle debonding stress at large volume fractions
of filler. This relationship holds up to a limiting modulus based on the size of the
polymer chains of the binder. An elastic yield energy, or resilience, is defined. Within
the limits of the yield stress equation, this yield energy is constant over a wide range
of strain rates and temperatures at high volume fractions of filler. © 2002 Wiley Period-
icals, Inc. J Appl Polym Sci 85: 455–466, 2002
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INTRODUCTION

Polymers are frequently blended with rigid fillers
such as talcum, calcium carbonate (CaCO3), and
mica to improve their mechanical properties. If an
energetic filler is used, such as ammonium per-
chlorate or cyclotrimethylene trinitramine (RDX),
a rocket motor propellant or plastic-bonded explo-
sive can be created.

When the filler particles are very small, the
debonding strength of the composite may exceed
the strength of the polymer.1 For spherical parti-
cles, this reinforcement2 may occur with particles
as large as 5 �m. For polymers filled with poorly
adhering spherical particles much larger than 5
�m, debonding3 of the filler particles causes the
material to yield, lowering its strength. There-
fore, a completely different relation is needed to
describe the yield strength of polymers filled with
large (�5 �m) particles. A number of mathemat-
ical descriptions3–9 of the debonding of large filler
particles have been published. These allow the

debonding stress to be described in terms of the
modulus and Poisson’s ratio of the binder, the
work of adhesion between the binder and the
filler, and the particle size of the filler. However,
not all the equations are in agreement.

It is shown here that the debonding stress is
affected by a limiting modulus. Also, the debond-
ing process can be characterized by the elastic
energy expended to deform the filled polymer to
the debonding stress. Within limits, this energy is
independent of the strain rate and temperature of
the sample.

BACKGROUND

One of the first debonding stress relations was
derived by Nicholson.4 A small, rigid sphere, sur-
rounded by a much larger sphere of an elastic
matrix material, is debonded by a uniform radial
stress applied at the outer surface of the matrix
sphere. Under this triaxial loading, the debonding
stress is

�d � �4����E��1 � ��

9r�1 � ��2 (1)
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where � is the energy absorbed in debonding a
unit area of the interface, E is the elastic modulus
of the matrix sphere, � is Poisson’s ratio of the
matrix sphere, and r is the size of the rigid filler
particle.

A slightly different debonding relation was de-
rived by Gent.5 In this analysis, a small particle
in uniaxial tension in an elastic matrix has a
small debonded region already existing. The
stress required to make this defect grow and
debond the particle is

�d � � 4	����E�

3r�sin�2���
(2)

where � is the angle from the center of the par-
ticle to the boundaries of the debonded region.

Another relation for debonding stress was de-
rived by Pukanszky and Voros6 for uniaxial ten-
sion:

�d � ��T �
2���Gm1
C1�Tr

where �T is the thermal stress applied to the
particle, Gm is the shear modulus of the matrix,
and C1 is a constant. Because

Gm �
E

2�1 � ��

their expression may be written

�d � ��T �
����E�1

C1�1 � ���Tr (3)

An alternate equation has been proposed for
when �T values are very small:

�d � �
�T

2 � �2���Gm

C1r

Therefore, in this case

�d � �
�T

2 � � ����E�

C1�1 � ��r (4)

Equation (4) is similar to eq. (1) when �T is 0,
except for the terms of Poisson’s ratio.

Pukanszky and Voros6 predicted debonding
stresses for CaCO3 particles in poly(vinyl chlo-

ride) (PVC), polypropylene (PP), and low-density
polyethylene (LDPE) matrices for three CaCO3
particle sizes: 60, 3.6, and 1.3 �m.

The estimated debonding stresses can be fit to
the following form:

�d �
C2

rn

from the ref. 6 estimates with the Microsoft Excel
trendline function. The resulting values for C2
and n are given in Table I, along with the R2

values for the fit. The values of n are different
from the expected values of 1 and 0.5 , suggesting
a theoretical dependence on particle size close to
0.25.

A relation for the yield stress of a composite,
which is similar in form to the Nicholson relation,
was derived by Vollenberg et al.3 It does not con-
tain any dependence on Poisson’s ratio. The yield
strength of a polymer containing a large volume
fraction of filler should be related to the debond-
ing stress if the debonding stress is lower than the
yield stress of the polymer alone. The Vollenberg
relation is

�y �
�T

a �
k
a �����E�

r (5)

where �y is the yield stress of the composite, a is
a stress concentration factor, and k is a nearly
constant parameter that has a slight dependence
on the moduli of the polymer and the filler. The
authors presented data for polystyrene and PP
composites filled with glass beads that showed
that �y was proportional to r(�0.5).

Another method for calculating the yield
strength involves calculating the yield strain. The
yield stress can then be estimated from the mod-
ulus, with a linear relation assumed between
stress and strain before debonding occurs. An
equation for yield strain was derived by Vratsa-
nos and Farris.7,8 If there is no superimposed

Table I Relations from Ref. 6 Debonding
Predictions

Matrix C2 n R2

PVC 26.413 0.281 0.9898
PP 17.267 0.2154 0.9729
LDPE 4.5965 0.2781 0.987
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outside pressure, the yield strain of the composite
in uniaxial tension is


c�� �

�dEc

d�f
�r

where �c is the yield strain of the composite and
dEc/d�f represents the change in the modulus of
the composite as a function of the change in the
volume fraction of particles that remain bonded.

If the stress–strain trace of a composite is lin-
ear up to the yield stress, the form of the yield
stress equation would be as follows:

�c�� ���E2

�dEc

d�f
�r

(6)

Summarizing eqs. (1–6) shows a fair amount of
agreement concerning the particle size (r) and
debonding energy (�). There is less agreement on
the role of the binder modulus, and no agreement
on the role of Poisson’s ratio of the matrix.

EXPERIMENTAL

A series of plastic-bonded explosive mixes with a
constant volume fraction of RDX filler was made
for sensitivity testing.10 A constant ratio of 150-
and 20-�m particles was used for each mix. The
volume fraction of the filler was within the range
typical for castable plastic-bonded explosives (67–
82%). The polymer chains of the polyurethane
binder consisted of polypropylene glycol (PPG)
molecules linked together by a mixture of isocya-
nate molecules. The polymer chains were diluted
with a plasticizer, isodecyl perlargonate. Varying
the type and amount of the isocyanate curative
molecules produced samples with tensile
strengths ranging from 0.115 to 0.466 MPa. The
moduli ranged from 0.447 to 12.933 MPa. The
mechanical properties were measured with 12.7-
mm-thick, dog-bone-shaped test specimens with
68.5-mm gage lengths. The temperature of the
tensile tests was 25°C, and the strain rate was
0.7407 min�1.

The yield strengths of these mixes were not
measured. However, there should not be a large
difference between the tensile strength and yield
strength for such highly filled composites. Once

the large filler particles debond, there is only a
small amount of polymer still carrying the tensile
load. As a result, tensile stresses much greater
than the yield stresses should not be possible.

The tensile strengths of the explosive mixes are
plotted versus the square root of modulus in Fig-
ure 1. There is a reasonable linear fit to most of
the data. This suggests that some of eqs. (1,2,4 or
5) may be applicable. It is possible that eq. (6) is
applicable, depending on the form of dEc/d�f.
However, the linear relationship between the ten-
sile stress and the square root of the modulus only
holds up to a limiting modulus.

Each mix contained the same plasticizer and
filler contents. Therefore, differences in the mod-
ulus from mix to mix should largely be caused by
differences in the size and branching of the poly-
mer chains.

A simple model of the polyurethane binders of
the explosive mixes explains their mechanical
properties. For simplicity, assume that all the
polyurethane polymer chains of a given mix have
the same average molecular weight (M). In real-
ity, the size of the polymer chains fits some nar-
row distribution around M. However, the polymer
chains that are larger than M will be balanced out
to some extent by the ones that are smaller than M.

M is related to the degree of reaction by
Carothers’ equation:11

R �
2
f �

2
fM (7)

where R is the reacted fraction of the PPG reac-
tive groups and f is the functionality of the mix.

f is defined as the number of reactive groups
divided by the number of molecules. The PPG
molecules contained two reactive groups per mol-
ecule. Therefore, a mix formulated to have 10
PPG molecules per branch point would have 20
reactive groups from the PPG molecules and 1
from the branch point. f would be

f �
20 � 1

10 � 2.1

This can be written as

f �
2P � 1

P (8)

where P is the number of PPG molecules per
branch point.
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Equation (7) can be rewritten to solve for M for
fR values less than or equal to 2:

M �
2

2 � fR (9)

The value of R is not known. However, an esti-
mate can be made, and the resulting values of the
molecular weight can be compared to a related
material property such as tensile strength. P is
known from the formulation for each mix.

The molecular weights calculated from eq. (9)
are plotted for three reaction fractions in Figure
2. Each curve becomes asymptotic at two points.
The horizontal asymptote represents the value of
M without any branching, that is, at a mix func-
tionality of 2. The vertical asymptote represents
the number of PPG molecules per branch at which
M becomes infinite. At this point, fR � 2, and the
binder becomes one giant polymer chain.

The tensile strengths of all the mixes that had
the same curative ratio are plotted as a function
of the number of PPG molecules per branch point
in Figure 3. From right to left, from 100 to 10 PPG
molecules per branch point, the tensile strengths
of the mixes increase. To the left of 10 PPG mol-
ecules per branch point, the tensile strengths
sharply decrease.

The 75 and 90% reaction curves of Figure 2
would be very hard to fit to the tensile stress data.
Both curves increase to the left of 10 PPGs per
branch point, whereas the tensile stress de-
creases. A much better correlation occurs with the
95% reaction curve.

The vertical asymptote of the 95% reaction
curve occurs at 9.5 PPG molecules per branch
point. The 95% reaction curve lies to the right of
9.5 PPG molecules per branch point, so it is in-
creasing over the same range in which the tensile
stress increases. This reaction percentage is pos-
sible because the curative ratio is greater than
1.0.

If the reaction percentage actually was 95%,
then the molecular weights calculated by eq. (9)
should relate to the tensile stress data. Polymers
with a narrow molecular weight distribution fit
the following relation:12

� �
C3�M � MT�

M � C3 � C3MT� 1
M� (10)

where � is the maximum tensile stress, C3 is a
constant, and MT is the threshold molecular
weight required to produce a positive stress. Plot-
ting the tensile stress data as a function of 1/M

Figure 1 Tensile strength of an RDX-filled polyurethane binder.

458 METZNER



should produce a linear relation with an intercept
of C3 and a slope of �C3MT. As Figure 4 shows,
the relationship is not linear over the entire range
of 1/M values.

Equation (10) is not valid as the molecular
weight of the polymer chains approaches infinity,
even if the true molecular weight of the polymer
chains is measured and used for M. It predicts
that a bigger mix of an identical formulation
would have a higher tensile strength because, if
the binder was all cured up into one giant poly-
mer chain, the bigger mix would have a higher
molecular weight polymer chain. It is known from
experience that a 1-gallon mix produces a mate-
rial identical in tensile strength to that from a
150-gallon mix. Therefore, eq. (10) can only be
used to predict the tensile strength for polymer
chains considerably smaller than those created
when fR � 2.

A reasonable linear relationship exists in Fig-
ure 4 for 1/M values of 0.033 and greater. By the
application of a linear fit to the data, it is deter-
mined that C3 � 0.9651 MPa and MT � 17.508
PPG molecules per polymer chain.

Figure 5 shows that the predicted tensile stress
with these values for C3 and MT is quite accurate

for molecular weights of 30 PPG molecules per
branch point and greater. This suggests that the
95% reaction estimate is in fact correct over that
data range.

At this point, the reaction fraction of some of
the mixes has been calculated, and the function-
ality of the mixes is known from formulation. This
allows the calculation of the size of the polymer
chains from eq. (9), which will help explain why
the linear relation in Figure 1 has a limiting
modulus.

ANALYSIS

The binder becomes essentially one giant polymer
chain at 95% reaction and 9.5 PPG molecules per
branch point, as shown by eq. (9). This assumes
that the reaction percentage continues to be close
to 95% as the number of PPG molecules per
branch decreases from 30 PPG molecules per
branch.

Figure 1 shows that 9.5 PPG molecules per
branch point marks the boundary between the
mixes, which obey a linear relation between the

Figure 2 Estimated values of M.
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Figure 3 Tensile strength versus branching.

Figure 4 Tensile strength versus reciprocal polymer chain size.
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tensile stress and the square root of the modulus.
At 10 PPG molecules per branch point, the data
point is possibly within the accuracy of the linear
relation. At 7 PPG molecules per branch point,
the data point is well below the expected linear
relation. At 3.5 PPG molecules per branch point,
the tensile stress is even further below expected
values. Therefore, a decrease in tensile strength
as modulus increases occurs when the value of fR
in eq. (9) exceeds 2, and the binder becomes es-
sentially one giant polymer chain.

This effect does not necessarily occur if large
particles are absent. Data from Liu and Bui13 on
castor-oil-based polyurethane polymers and Ero-
glu14 on polybutadiene-based polymers confirm
this. In both cases, the tensile strength continued
to increase as the modulus increased for values of
fR well above 2. Also, data from Haska et al.15

showed that the tensile strength also increased at
fR values above 2 for polybutadiene-based poly-
urethanes filled with 25-nm carbon black parti-
cles. Therefore, the decreasing tensile strengths
as the moduli increased in Figure 1 were probably
caused by an effect related to both the sizes of the
polymer chains of the binders and the size of the
RDX filler particles.

The mixes in Figure 1 were cured at 60°C.
Because the mixes were liquid when put into the
curing oven, they should have been stress-free at
that temperature. The actual stress-free temper-
ature of the cured solid mixes may have been
slightly higher than 60°C because of a slight cure
shrinkage during the transition from a liquid
state to a solid state.

The tensile tests were run on samples that
were held at 25°C for at least 1 day. The linear
coefficient of thermal expansion for the mixes was
approximately 10 	 10�5 cm/cm/°C. However, the
linear coefficient of thermal expansion of the RDX
filler was approximately 6.4 	 10�5 cm/cm/°C.
Because the volume fraction of the binder was
smaller than the volume fraction of RDX, the
binders of the mixes must have had significantly
higher coefficients of thermal expansion than the
RDX filler. As a result, thermal stresses must
have developed around each filler particle.

The mixes that clearly fit the linear relation in
Figure 1 had PPG molecules per branch point
values ranging from 15.89 to 100. As can be seen
in Figure 2, the M values of their polymer chains
ranged from 50 to 22 PPG molecules. These poly-
mer chains should be able to disentangle and flow

Figure 5 Measured and predicted tensile strength versus branching.
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to relieve the thermal stresses generated during
cooling from 60 to 25°C. However, mixes formu-
lated with 3.5 and 7 PPG molecules per branch
point would have few, if any, discrete polymer
chains. Their ability to flow in response to a stress
would be limited to the molecular weight between
crosslinks. At 3.5 PPG molecules between
crosslinks, the largest thermal stresses would re-
main, and the binder would be prestressed the
most. Therefore, that formulation has the lowest
tensile strength of the nonlinear mixes. At 7 PPG
molecules per crosslink, more thermal strain can
be relieved, and the tensile strength is less de-
graded. At 10 PPG molecules per branch point,
the polymer chains can deform enough to relieve
essentially all the thermal stresses.

Therefore, up to a limiting modulus, which de-
pends on the size of the polymer chains of the
binder, the yield strength of a polymer highly
filled with large particles should be proportional
to E(0.5). As demonstrated experimentally by ref.
3, it should also be proportional to r(�0.5)). The
relation of the yield strength to �, the energy
absorbed in debonding a unit surface area of the
filler, has not been experimentally demonstrated
here. However, eqs. (1,2,4,5) and possibly eq. (6),
which have the correct form for the modulus,
suggest that the yield strength is proportional
to �(0.5).

THEORETICAL DEVELOPMENT

A typical stress–strain curve for a composite
rocket motor propellant is shown in Figure 6. The
initial part of the curve is almost linear. The slope
of the tangent to this part of the stress–strain
curve is the modulus of the propellant.

At some point, the rubbery propellant binder
starts to detach from the large filler particles. The
curve bends away from the modulus line as the
large filler particles detach because they no
longer can carry a load. As more of the large filler
particles debond, the slope of the stress–strain
curve decreases. At some point, all the large filler
particles have debonded. At this point, if there is
not another mechanism to affect the slope of the
curve, it will remain relatively unchanged until
another slope-changing mechanism comes into
play. This point on the stress–strain curve, at
which the slope has temporarily stopped decreas-
ing, is defined here as the yield point. The stress
and strain at that point are defined as the yield
stress and yield strain, respectively.

After the yield point, the curve will usually
resemble the top of a plateau. In this section of
the curve, small tears in the binder are beginning
to grow. Medium-sized filler particles, if present,
may possibly detach in this portion of the curve.
Eventually, the small tears develop into large
fissures, and the sample ruptures.

Figure 6 Properties of a composite propellant (�54°C, 0.7407/min): (a) the yield
stress, (b) an artificial yield point with the same yield stress, and (c) the strain at the
artificial yield.
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As concluded in the previous section, up to a
limiting modulus, the yield strength of a polymer
filled with a large volume fraction of large (�5
�m) particles should be proportional to

�y���Ec

r (11)

Ec  E


where � is the work of adhesion between the
binder and filler, Ec is the modulus of the compos-
ite material, r is the particle size of the filler, �y is
the yield stress (approximately equal to the max-
imum stress), and E
 is the modulus of the com-
posite at fR � 2. There may also be some depen-
dence on Poisson’s ratio.

The elastic energy required to yield the com-
posite propellant can be approximated by the cre-
ation of an artificial yield point on the modulus
line. In Figure 6, the yield stress of the sample
[Fig. 6(a)] is used to locate this point [Fig. 6(b)] on
the modulus line. The linear yield strain is the
strain [Fig. 6(c)] at that point on the modulus line
at which the stress is equal to the yield stress.
Then,


ly �
�y

Ec

where �y is the yield stress [Fig. 6(a)] and �ly is the
linear yield strain [Fig. 6(c)].

The area under the triangle origin-b-c repre-
sents the work done in traveling from the origin
to point b, divided by the stressed volume of the
sample. The work done is

V �
1
2 �y
ly �

�y
2

2Ec
(12)

where V is the elastic yield energy per unit vol-
ume. This elastic yield energy is also known as
the modulus of resilience.

If � and (perhaps) � are not strongly dependent
on the strain rate and temperature, �y

2/2E should
not depend strongly on the strain rate and tem-
perature for polymers with large volume fractions
of filler with some adhesion to the polymer.

Yield properties were measured for high-den-
sity polyethylene (HDPE) filled with CaCO3.16

The elastic yield energy, �y
2/2E, is plotted in Fig-

ure 7. At 0 and 10% volume fractions of filler, the
elastic yield energy forms a similar pattern, with
the lowest and highest strain rate data points
falling between the 0.2- and 0.8-min�1 data. At a
20% volume fraction of filler, the elastic yield
energy is strain-rate-dependent, with a large
variance between the lowest and highest strain
rates. At higher volume fractions of filler, where

Figure 7 Energy to linear yield strain for HDPE/CaCO3 composites (data from ref.
16).
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debonding of the filler particles affects the yield-
ing mechanism, the elastic yield energy varies
less with the strain rate. This is shown as follows,
where the difference between the highest and
lowest elastic yield energies, divided by the aver-
age yield energy, is listed for each volume fraction
of filler, �.

�
�%�

Vmax � Vmin

Vavg
�%�

0 24.6
10 29.6
20 38.9
30 27.8
40 25.2

Other data show that at a very high volume
fraction of the filler, the elastic yield energy is
constant within a certain range. Figure 8 plots
the elastic yield energies of samples taken from
two composite propellant rocket motors. The elas-
tic yield energy is constant for square root of
modulus values between 3.75 and 10. Outside this
range, the elastic yield energy is not constant.

A potential explanation for the reduced yield
energy is suggested in Figure 9, which displays

the ratio of the elastic yield energy to the total
energy under the stress–strain curve. At very
low moduli, the energy ratio approaches 50%.
This means that the area of the elastic yield
triangle is almost half the area under the whole
curve. The area of the triangle is (1/2)�y�ly,
whereas the area under the rest of the curve is
roughly �y(�rupture � �ly). This assumes that �y

is approximately the same as the maximum
stress and that the curve is a flat plateau. For
similar areas, �rupture must be quite close to �ly.
If the rupture point is only slightly after the
linear yield point, it is probable that rupturing
processes started in the yielding portion of the
stress–strain curve.

The elastic yield energy was calculated under
the assumption that debonding of the filler pre-
ceded rupturing of the propellant. When the en-
ergy ratio approaches 50%, this assumption may
no longer be true. When the square root of mod-
ulus in Figure 9 reaches 3.75 and the volumetric
elastic yield energy becomes constant, the energy
ratio is approximately 20%. For this composite
material, the yield process is only independent of
rupturing when the elastic yield energy is less
than 20% of the total energy.

Figure 8 Volumetric elastic yield energy for a composite propellant.
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Two data points on the right side of Figure 8
also do not fit on the constant yield energy pla-
teau. When the square root of modulus ap-
proaches 12.5, there is a great increase in the
yield energy. These two data points were taken at
�40°C at a strain rate of 68.5 min�1. In compar-
ison, the Figure 1 data were taken at 0.7407
min�1, the standard rate for lot acceptance test-
ing of propellants. At such a cold temperature and
such a high strain rate, the propellant may no
longer be rubbery. It might be in the leathery
zone between the glass transition and rubbery
behavior. Equation (11) was derived under the
assumption that the binder is an elastic material.
This assumption may no longer be true at �40°C
and 68.5 min�1.

A second factor may be that maximum stress
data, not yield stress data, were used to calculate
the yield energies for Figure 8. At low tempera-
tures and high strain rates, the yield stress may
be below the maximum stress.

CONCLUSIONS

Up to a limiting modulus, the yield stress of a
polymer filled with a large volume fraction of rigid

filler particles much larger than 5 �m is related to
the single-particle debonding stress. The debond-
ing stress is proportional to (E/r)(0.5). It is likely
also proportional to (�E/r)(0.5).

The limiting modulus occurs when the polymer
chains of the binder are nearly all linked up into
one giant molecule. The reaction fraction and
functionality required to form this polymer can be
calculated by Carothers’ equation.11 The differ-
ence between the coefficients of thermal expan-
sion of the polymer and filler, the temperature,
the size of the filler particles, and the molecular
weight between crosslinks of the binder affect the
tensile strength of the composite material when
the modulus exceeds the limiting modulus.

The elastic energy, required to yield a polymer
filled with a very large volume fraction of rigid
filler particles much larger than 5 �m, is constant
over a wide range of strain rates and tempera-
tures for mixes within the modulus limit. There-
fore, �y

2/(2E) is constant over that range of strain
rates and temperatures. If either the modulus or
the yield stress is known as a function of the
strain rate and temperature, the other can be
calculated at any strain rate or temperature in
the applicable range.

Figure 9 Ratio of the elastic yield energy to the energy to break for a composite
propellant.
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The range over which the elastic yield energy is
constant has two boundaries. At low moduli, rup-
turing of the polymer may occur simultaneously
with the debonding of the filler, lowering the yield
energy. At cold temperatures and very high strain
rates, the yield energy may be higher than that
predicted by the debonding equations.
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